
Static Code Analysis: Best Practices
for Software Assurance in the

A i iti Lif C lAcquisition Life Cycle

Paul R. Crollau C o
Fellow
CSC

pcroll@csc.comp @

Chair, NDIA Software Industry
Experts Panel

Industry Co Chair NDIAIndustry Co-Chair, NDIA
Systems Assurance Committee

1P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

Outline

Setting the Stage for Static Code Analysisg g y
– What is Static Code Analysis?
– The Scope of The Problem

T ti St ti C d A l i– Testing vs. Static Code Analysis
– What Code Do You Analyze?
– A Three-Phase Code Analysis ProcessA Three Phase Code Analysis Process
– The Assurance Case

Static Code Analysis in the Acquisition Life
CCycle
Challenges to Effective Static Code Analysis
Useful LinksUseful Links

2P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

Setting the Stage for Static
Code AnalysisCode Analysis

3P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

What is Static Code Analysis?

Static code analysis is the process of evaluating
t t b d it fa system or component based on its form,

structure, content, or documentation. From a
software assurance perspective, static analysis
addresses weaknesses in program code thataddresses weaknesses in program code that
might lead to vulnerabilities
Such analysis may be manual, as in code
inspections or automated through the use ofinspections, or automated through the use of
one or more tools
Automated static code analyzers typically check
source code but there is a smaller set ofsource code but there is a smaller set of
analyzers that check byte code and binary code,
especially useful when source code in not
available (e.g for COTS components).(g p)

4P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

The Scope of The Problemp

Figure 1. Estimated Number of Security
Vulnerabilities in Software Applications. Source:
Capers Jones © 2008

Figure 2. Probability of Serious Security
Vulnerabilities in Software Applications. Source:
Capers Jones © 2008

For military projects, as one approaches systems the size of typical large combat systems (expressed
as function points), the estimated number of security vulnerabilities rises to above 3000 and the
probability of serious vulnerabilities rises to over 45%
The statistics are much worse for civilian systems. As we move more and more into COTS and open
source software for our combat systems one might expect that the true extent of vulnerabilities in our

5

source software for our combat systems, one might expect that the true extent of vulnerabilities in our
systems would lie somewhere between those of military and civilian systems.

P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

COTS and Open Source
Exacerbate the ProblemExacerbate the Problem

Reifer and Bryant [2] studied 100 packages were selected at random from 50
public Open-Source, COTS, and GOTS libraries

Spanned a full range of applications and sites like SourceForge– Spanned a full range of applications and sites like SourceForge
– Over 30% of Open Source and GOTS (Government Off the Shelf) packages

analyzed had dead code
– Over 20% of the Open Source, COTS, and GOTS packages had suspected

malware
– Over 30% of the COTS packages analyzed had behavioral problems p g y p

Reifer and Bryant conclude that the potential for malicious code in
applications software is large as more and more packages are used in
developing a system.

6

Figure 3. COTS Study Findings. Source: D. Reifer and E. Bryant, Software Assurance in
COTS and Open Source Packages, DHS Software Assurance Forum, October 2008

P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

DoD Clarifying Guidance Regarding Open
Source Software (OSS) – October 16, 2009Source Software (OSS) October 16, 2009

2. GUIDANCE
a. In almost all cases, OSS meets the definition of “commercial computer software”
and shall be given appropriate statutory preference in accordance with 10 USC 2377
(reference (b)) (see also FAR 2.101(b), 12.000, 12.101 (reference (c)); and DFARS
212.212, and 252.227-7014(a)(1) (reference (d))).
c. DoD Instruction 8500.2, “Information Assurance (IA) Implementation,” (reference, () p , (
(g)) includes an Information Assurance Control, “DCPD-1 Public Domain Software
Controls,” which limits the use of “binary or machine-executable public domain software
or other software products with limited or no warranty,” on the grounds that these items
are difficult or impossible to review, repair, or extend, given that the Government does
not have access to the original source code and there is no owner who could make such
repairs on behalf of the government. This control should not be interpreted as forbidding
the use of OSS, as the source code is available for review, repair and extension by the
government and its contractors.
d. The use of any software without appropriate maintenance and support presents an
information assurance risk. Before approving the use of software (including OSS),
system/program managers, and ultimately Designated Approving Authorities (DAAs),
must ensure that the plan for software support (e.g., commercial or Government program
office support) is adequate for mission need.

7P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

Source: DoD Chief Information Officer (CIO) Memorandum, “Clarifying Guidance Regarding
Open Source Software (OSS) in the Department of Defense (DoD),” October 16, 2009

Testing vs. Static Code
AnalysisAnalysis

Testing requires code that is relatively complete
Static analysis can be performed on modules or
unfinished code [4]
A static analysis tool is a program written to analyze
other programs for flawsother programs for flaws
– Such analyzers typically check source code
– A smaller set of analyzers can check byte code and

binary codebinary code
Manual analysis, or code inspection, can be very
time-consuming, and inspection teams must know
what security vulnerabilities look like in order to
ff ti l i th deffectively examine the code

Static analysis tools are faster and don’t require the
tool operator to have the same level of security
expertise as a code inspector [5]expertise as a code inspector [5]

8P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

What Code Do You Analyze?

How do you prioritize a code review effort when
h th d f li f d dyou have thousands of lines of source code, and

perhaps object code to review?
From a software assurance perspective, looking
t tt k f i t b d l t t t [6]at attack surfaces is not a bad place to start [6]
– A system’s attack surface can be thought of as

the set of ways in which an adversary can enter
the system and potentially cause damagethe system and potentially cause damage

– The larger the attack surface, the more insecure
the system [7]

– Higher attack surface software requires deeperHigher attack surface software requires deeper
review than code in lower attack surface
components.

9P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

Heuristics For Code Review – 1

Howard proposes the following heuristics as an aid to
determining code review priority [8]:
– Old code

Older code may have more vulnerabilities than new code because
newer code often reflects a better understanding of security issues
Code considered “legacy” code should be reviewed in depth.

C d th t b d f lt– Code that runs by default
Attackers often go after installed code that runs by default
Such code should be reviewed earlier and deeper than code that
doesn’t execute by default
Code running by default increases an application’s attack surfaceCode running by default increases an application s attack surface

– Code that runs in elevated context.
Code that runs in elevated identities, e.g. root in *nix, for example,
also requires earlier and deeper review because code identity is
another component of attack surface.

– Anonymously accessible code
Code that anonymous users can access should be reviewed in
greater depth than code that only valid users and administrators can
access.

10P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

Heuristics For Code Review – 2

– Code listening on a globally accessible network interface
Code that listens by default on a network, especially uncontrolled networks like
the Internet is open to substantial risk and must be reviewed in depth forthe Internet, is open to substantial risk and must be reviewed in depth for
security vulnerabilities.

– Code written in C/C++/assembly language
Because these languages have direct access to memory, buffer-manipulation
vulnerabilities within the code can lead to buffer overflows, which often lead to
malicious code execution
Code written in these languages should be analyzed in depth for buffer-
overflow vulnerabilities

– Code with a history of vulnerabilities
Code that’s had a number past security vulnerabilities should be suspect,
unless it can be demonstrated that those vulnerabilities have been
effectively removed.

– Code that handles sensitive data
Code that handles sensitive data to should be analyzed to ensure that
weaknesses in the code do not disclose such data to untrusted users.

– Complex codeComplex code
Complex code has a higher bug probability, is more difficult to
understand, and may likely have more security vulnerabilities.

– Code that changes frequently.
Frequently changing code often results in new bugs being introduced
N t ll f th b ill b it l biliti b t d ithNot all of these bugs will be security vulnerabilities, but compared with a
stable set of code that’s updated only infrequently, code that is less
stable will probably have more vulnerabilities in it

11P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

A Three-Phase Code Analysis
Process – Phase 1Process – Phase 1

Howard [6] also suggests a notional three-[] gg
phase code analysis process that optimizes
the use of static analysis tools.

Phase 1 Run all available code analysis– Phase 1 – Run all available code-analysis
tools

Multiple tools should be used to offset tool biases
and minimize false positives and false negativesand minimize false positives and false negatives
Analysts should pay attention to every warning or
error

– Warnings from multiple tools may indicate that theWarnings from multiple tools may indicate that the
code that needs closer scrutiny (e.g. manual analysis).

Code should be evaluated early, preferable with
each build, and re-evaluated at every milestone.

12P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

A Three-Phase Code Analysis
Process – Phase 2Process – Phase 2

Phase 2 – Look for common vulnerability patterns
Analysts should make sure that code reviews cover the– Analysts should make sure that code reviews cover the
most common vulnerabilities and weaknesses, such as
integer arithmetic issues, buffer overruns, SQL injection,
and cross-site scripting (XSS)
S f– Sources for such common vulnerabilities and weaknesses
include the Common Vulnerabilities and Exposures (CVE)
and Common Weaknesses Enumeration (CWE)
databases, maintained by the MITRE Corporation and

ibl h // i / / daccessible at: http://cve.mitre.org/cve/ and
http://cwe.mitre.org/

– MITRE, in cooperation with the SANS Institute, also
maintain a list of the “Top 25 Most Dangerous p g
Programming Errors” (http://cwe.mitre.org/top25/index.html)
that can lead to serious vulnerabilities

– Static code analysis tool and manual techniques should at
a minimum address these Top 25a minimum, address these Top 25

13P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

A Three-Phase Code Analysis
Process – Phase 3Process – Phase 3

Phase 3 – Dig deep into risky codePhase 3 Dig deep into risky code
– Analysts should also use manual analysis

(e.g. code inspection) to more thoroughly
l t i k d th t h bevaluate any risky code that has been

identified based on the attack surface, or
based on the heuristics on Slides 9 and 10

– Such code review should start at the entry
point for each module under review and
should trace data flow though the systemshould trace data flow though the system,
evaluating the data, how it’s used, and if
security objectives might be compromised

14P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

The Assurance Case
An Assurance Case is a set of structured assurance claims, supported
by evidence and reasoning that demonstrates how assurance needs
have been satisfied [9]have been satisfied [9]

– It shows compliance with assurance objectives
– It provides an argument for the safety and security of the product or service.
– It is built, collected, and maintained throughout the life cycle
– It is derived from multiple sources– It is derived from multiple sources

The Sub-parts of an assurance case include:
– A high level summary
– Justification that product or service is acceptably safe, secure, or dependable
– Rationale for claiming a specified level of safety and securityRationale for claiming a specified level of safety and security
– Conformance with relevant standards and regulatory requirements
– The configuration baseline
– Identified hazards and threats and residual risk of each hazard and threat
– Operational and support assumptions

An Assurance Case should be part of every acquisition in which there is
concern for IT security

– Should be prepared by the supplier
– Should describe

Th l t d l i f th ft b i d li dThe assurance-related claims for the software being delivered,
The arguments backing up those claims,
The hard evidence supporting those arguments

15P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

Static Code Analysis in the
Acquisition Life CycleAcquisition Life Cycle

16P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

System Engineering Technical
Review Process (SETR)Review Process (SETR)

DoDI 5000.02, Operation of the Defense Acquisition System [10],
describes the System Engineering Technical Review (SETR)
process associated with the system acquisition life cycleprocess associated with the system acquisition life cycle.

17

Figure 4. SETR Process

P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

Software CI Reviews
Figure 5. Software CI Reviews

Source: PEO IWS Technical Review Manual (TRM), December 2008
Figure 5. Software CI Reviews

Source: PEO IWS Technical Review Manual (TRM), December 2008

The reviews typically associated withThe reviews typically associated with
software are shown below

Software
Coding and

Software
Architectural

Software
Detailed
D i

Coding and
Testing

Software
Integration Software

Architectural
Design

Design Qualification
Testing

SRR SW
CDR

SW SVR
FCA/PCA

SW
PDR

Software
Requirements
Analysis

SW
TRR

S f C

18

Figure 5. Software CI Reviews
Source: PEO IWS Technical Review Manual (TRM), December 2008

P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

System Requirements Review
(SRR) Objectives(SRR) Objectives

The SRR helps the PM understandThe SRR helps the PM understand
the scope of the software assurance
landscape (assurance requirements,landscape (assurance requirements,
elements to be protected, the threat
environment) in which context staticenvironment) in which context static
code analysis should be applied.

19P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

System Requirements Review
(SRR) Outcomes(SRR) Outcomes

Establishment of the System Assurance Case
– Specification of the top-level system assurance claims that addressSpecification of the top level system assurance claims that address

identified threats to the mission.
– Identification of the approach for developing the system assurance case.

Identification of all critical elements to be protected
– Identification of all relevant system assurance threats and their potential

i t iti l t timpact on critical system assets.
– Identification of high-level potential weaknesses in the system
– Determination and derivation of system assurance requirements (as a

subset of the system requirements).
Test and Evaluation Master Plan (TEMP) addressing systemTest and Evaluation Master Plan (TEMP) addressing system
assurance

– Examine the TEMP to ensure testing processes are sufficient for system
assurance. This may include planning for static code analysis.

Support and Maintenance Concepts
– Documentation of the support and maintenance concepts including a

description of how assurance will be maintained.
– Description of what static code analysis tools will be used post

deployment and how and when they will be applied

20P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

Preliminary Design Review
(PDR) Objectives(PDR) Objectives

The PDR is a multi-disciplinedThe PDR is a multi disciplined
technical review to ensure that the
system under review can proceedsystem under review can proceed
into detailed design, and can meet
the stated performance requirementsthe stated performance requirements
within cost (program budget),
schedule (program schedule), risk, (p g), ,
and specific assurance requirements
and constraints.

21P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

Preliminary Design Review
(PDR) Outcomes – 1(PDR) Outcomes – 1

Information security technology evaluation of all critical
COTS/GOTS elements

P f d f h l i f l i– Performed as part of the analysis of alternatives.
– Includes an updated assurance case based on the design, and new

weaknesses and vulnerabilities identified.
– Results of static code analyses performed of GOTS/COTS components.

Which tools were used?Which tools were used?
What weaknesses and vulnerabilities were discovered

Specification of assurance-specific static analysis
– Specification of assurance-specific static analysis and assurance-

specific criteria to be examined during code reviews
C d i f d d i i l t tiCode reviews performed during implementation
Documented in the System Engineering Plan (SEP) and Software
Development Plan (SDP)
Plan for training to use static analysis tools and for manual analysis

Configuration management
– For Assurance, the preliminary configuration management plan must

support traceability and protection of each configuration item, including
requirements and architectural elements.

At what stages of the configuration management process will static code
analysis be applied?
Wh t fi ti h t ill t i d l i ?What configuration change events will trigger code analysis?
What components will be analyzed?
How will the results of the analyses be documented?

22P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

Preliminary Design Review
(PDR) Outcomes – 2(PDR) Outcomes – 2

Supply Chain Assurance
– For all critical elements being considered for

procurement, an analysis of the supplier and its
processes should be performed

Will the supplier perform static code analysis as partWill the supplier perform static code analysis as part
of its code development and/or code integration
processes?
Which components will be analyzed? Which will not?
Wh l d h l ?What tools do they plan to use?
What are the details of their code inspection process
for manual security analysis?
How will they mitigated any discovered vulnerabilitiesHow will they mitigated any discovered vulnerabilities
or weaknesses?

Assurance Case
– Updating of the assurance case with relevant p g

evidence

23P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

Additional Preliminary Design
Review (PDR) ConsiderationsReview (PDR) Considerations

COTS source code is rarely available to the acquirer for
independent code reviewindependent code review
– PMs should request COTS vendors provide Assurance

Cases for their COTS products detailing both the vendor’s
secure coding practices and the results of internal static
code analysis or third party assessment (e g Commoncode analysis or third party assessment (e.g. Common
Criteria certification)

– In cases where such information is unavailable, and there is
still a desire to use the COTS component, the PM should
consider binary code analysisconsider binary code analysis

– Such analysis could be performed either as part of the
system integrator’s life cycle process, or independently by an
IV&V agent

Ensure that a party other than the developer (suchEnsure that a party other than the developer (such
as a peer) will independently perform static analysis
and test, and that the element being reviewed will be
the element that will be delivered.

24P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

Critical Design Review (CDR)
ObjectivesObjectives

The CDR is a multi-disciplined technicalThe CDR is a multi disciplined technical
review to ensure that the system under
review can proceed into system p y
fabrication, demonstration, and test,
and can meet the stated performance
requirements within cost (program
budget), schedule (program schedule),
i k d ifirisk, and specific assurance

requirements and constraints

25P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

Critical Design Review (CDR)
OutcomesOutcomes

Identification and use of selected source code analysis tools
S l ti f dditi l d l t t l d id li t– Selection of additional development tools and guidelines to
counter weaknesses and vulnerabilities in the system
elements and development environment(s)

These include static analysis tools for source code evaluation.
Definition and selection of assurance specific static analyses– Definition and selection of assurance-specific static analyses
and assurance-specific criteria to be examined during peer
reviews performed during implementation.

Documented in the SEP and Software Development Plan (SDP).
Planning for training for assurance-unique static analysis– Planning for training for assurance-unique static analysis
tools and peer reviews.

– Ensuring that another party (such as a peer) will
independently perform static analysis and test, and that the
element being reviewed will be the element that will beelement being reviewed will be the element that will be
delivered

This counteracts the risk of a developer intentionally subverting
analysis and test, as well as aiding against unintentional errors.

Assurance Case
– Updating of the assurance case with relevant evidence.

26P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

Test Readiness Review (TRR)
ObjectivesObjectives

The TRR is a multi-disciplinedThe TRR is a multi disciplined
technical review to ensure that the
subsystem or system under review issubsystem or system under review is
ready to proceed into formal test

27P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

Test Readiness Review (TRR)
OutcomesOutcomes

Verification regarding static code analysis
– Verification that assurance-specific static analysis and peer p y p

reviews of assurance criteria have been completed
– Verification that another party (such as a peer) performed

static analysis and peer review
– Selection of any additional static analysis tools to identify or Se ect o o a y add t o a stat c a a ys s too s to de t y o

verify weaknesses and vulnerabilities in the system elements
and development environment(s)

– Completion and verification of an information security
technology evaluation for all critical COTS/GOTS elements.gy

Open source verification
– Identification of industry tools and test cases to be used for

the testing of any binary or machine-executable open source
software products with no warranty and no source code. p y

– Documentation of evidence that static analysis has been
performed (both source and binary) to identify weaknesses
and vulnerabilities such as buffer overruns and cross-site
scripting issues.

Assurance Case
– Updating of the assurance case with relevant evidence

28P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

System Verification Review
SVR/Production Readiness Review (PRR)

Obj tiObjectives
The SVR is a multi-disciplined product and process
assessment to ensure that the system under reviewassessment to ensure that the system under review
can proceed into low-rate initial production (LRIP)
and full-rate production (FRP) within cost (program
budget), schedule (program schedule), risk, and
th t t i tother system constraints

The PRR examines a program to determine if the
design is ready for production and if the producer
has accomplished adequate production planninghas accomplished adequate production planning
The primary difference between PRR and TRR is
that the system test results are available prior to
PRR
– If changes are made to the system in response to test

results, it will be necessary to revisit TRR tasks
– Any evidence provided by system test results should

be incorporated into the assurance case prior to PRRbe incorporated into the assurance case prior to PRR

29P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

System Verification Review
SVR/Production Readiness Review (PRR)

O tOutcomes
Verification regarding static code analysis
– Verification that assurance-specific static analysis and peerVerification that assurance specific static analysis and peer

reviews of assurance criteria have been completed.
– Verification that another party (such as a peer) performed

static analysis and peer review.
– Selection of any additional static analysis tools to identify orSelection of any additional static analysis tools to identify or

verify weaknesses and vulnerabilities in the system elements
and development environment(s).

– Completion and verification of an information security
technology evaluation for all critical COTS/GOTS elements. gy

Open source verification
– Identification of industry tools and test cases to be used for

the testing of any binary or machine-executable open source
software products with no warranty and no source code.software products with no warranty and no source code.

– Documentation of evidence that static analysis has been
performed (both source and binary) to identify weaknesses
and vulnerabilities such as buffer overruns and cross-site
scripting issues.g

Assurance Case
– Updating of the assurance case with relevant evidence.

30P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

Operational Test Readiness
Review (OTRR) ObjectivesReview (OTRR) Objectives
The OTRR is a multi-disciplined product p p
and process assessment to ensure that
the “production configuration” system
can proceed into Initial Operational Testcan proceed into Initial Operational Test
and Evaluation with a high probability of
successfully completing the operational
testingtesting
Successful performance during
operational test generally indicates that p g y
the system is suitable and effective for
service introduction

31P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

Operational Test Readiness
Review (OTRR)Review (OTRR)

Verification regarding static code analysis
– Re-verification that assurance-specific static analysisRe verification that assurance specific static analysis

and peer reviews of assurance criteria have been
completed.

Source code static analysis is typically not performed again
for OTRR but binary analysis is performed if appropriatefor OTRR, but binary analysis is performed, if appropriate.

– Re-verification that another party (such as a peer)
performed static analysis and peer review.

– Completion and verification of an information security
t h l l ti f ll iti l COTS/GOTStechnology evaluation for all critical COTS/GOTS
elements.

Weaknesses and vulnerabilities evaluation
– Documentation of evidence that the system has beenDocumentation of evidence that the system has been

analyzed for weakness and vulnerabilities using static
(binary) analysis tools to identify such flaws as buffer
overruns and cross-site scripting issues

Assurance CaseAssurance Case
– Updating of the assurance case with relevant evidence

32P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

In-Service Review (ISR)
ObjectivesObjectives

The ISR is a multi-disciplined productThe ISR is a multi disciplined product
and process assessment to ensure that
the system under review is operationally y p y
employed with well-understood and
managed risk. This review is intended
to characterize the in-service technical
and operational health of the deployed

t It id t fsystem. It provides an assessment of
risk, readiness, technical status, and
trends in a measurable formtrends in a measurable form

33P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

In-Service Review (ISR)
OutcomesOutcomes

Configuration Management
– Review of the configuration management

process, to determine that it remains adequate
with respect to analysis of code changes, and
being followedbeing followed

Weaknesses and vulnerabilities evaluation
– Documentation of evidence that any changes to

the software throughout its service life have beenthe software throughout its service life have been
analyzed for weakness and vulnerabilities using
static (source or binary) analysis tools to identify
such flaws as buffer overruns and cross-site

i ti iscripting issues
Assurance Case
– Updating of the assurance case with relevant

idevidence

34P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

Challenges to Effective Static
Code AnalysisCode Analysis

35P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

Challenge – Procurement and
Maintenance of ToolsMaintenance of Tools

The better static code analysis tools are
iexpensive

– Use multiple tools used to offset tool biases and
minimize false positives and false negatives can
quickly become cost prohibitive for a singlequickly become cost prohibitive for a single
program

– In addition, maintenance agreements to ensure a
tool is up to date with respect to the spectrum of p p p
threats, weaknesses, and vulnerabilities add long
term costs

Buy it once, use it often provides the most bang
f th b kfor the buck
Pooled-resources analysis labs may make
economic sense.

36P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

Challenge – Training
Static code analysis is not for sissies, although it
may be for CISSPs (Certified Information Systemmay be for CISSPs (Certified Information System
Security Professionals)
– This tongue-in-cheek statement belies the difficulty in

using static code analysis tools to their best advantage
Ch d Ch d St [12] i t t th t h– Chandra, Chess, and Steven [12] point out that when
static code analysis tools are employed by a trained
team of code analysts, false positives are less of a
concern; the analysts become skilled with the tools

i kl d t ll dit itvery quickly; and greater overall audit capacity
results.

In order to determine the validity of static code
analysis results, it is important for PMs toanalysis results, it is important for PMs to
understand
– The level of training that code analysts have had with

the tools employed for static code analysis
Th i d t di f d k d– Their understanding of code weaknesses and
vulnerabilities

37P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

Useful Links

NIST SAMATE Static Analysis Tool Survey
– The National Institutes for Science and Technology

(NIST), Software Assurance Metrics and Tool
Evaluation (SAMATE) project, provides tables
describing current static code analysis tools for sourcedescribing current static code analysis tools for source,
byte, and binary code analysis

– More information on SAMATE can be found at
http://samate.nist.gov/p g

DHS Build Security In Web Site
– A wealth of software and information assurance

information, including white papers on static code , g p p
analysis tools

– More information on Build Security In can be found at
https://buildsecurityin.us-cert.gov/daisy/bsi/home.html

38P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

References
[1] Jones, Capers. Overview of the United States Software Industry Results Circa 2008,

June 20, 2008.
[2] Reifer, D, and Bryant, E. Software Assurance in COTS and Open Source Packages,[2] Reifer, D, and Bryant, E. Software Assurance in COTS and Open Source Packages,

Proceedings of the DHS Software Assurance Forum, October 14-16, 2008.
[3] DoD Chief Information Officer (CIO) Memorandum, Clarifying Guidance Regarding

Open Source Software (OSS) in the Department of Defense (DoD), October 16, 2009
[4] Black, P. Static Analyzers in Software Engineering, CrossTalk, The Journal of Defense

Software Engineering pp 16-17 March-April 2009Software Engineering, pp. 16 17, March April 2009.
[5] McGraw, G. Automated Code Review Tools for Security, Computer, vol. 41, no. 12,

pp. 108-111, Dec. 2008.
[6] Howard, M. Mitigate Security Risks by Minimizing the Code You Expose to Untrusted

Users, http://msdn.microsoft.com/msdnmag/issues/04/11/AttackSurface,
November 2004November, 2004.

[7] Manadhata, P., Tan, K, Maxion, R, and Wing, J. An Approach to Measuring a
System’s Attack Surface, CMU-CS-07-146, Carnegie Mellon University, August 2007.

[8] Howard, M. A Process for Performing Security Code Reviews, IEEE Security &
Privacy, pp. 74-79, July-August 2006.

[9] ISO/IEC/IEEE CD 1 026 2 3 S d f i i S d[9] ISO/IEC/IEEE CD 15026-2.3, Systems and software engineering — Systems and
software assurance — Part 2: Assurance case, February 12, 2009.

[10] DoDI 5000.02, Operation of the Defense Acquisition System, December 8, 2008.
[11] Program Executive Office (PEO) Integrated Warfare Systems (IWS) Technical

Review Manual (TRM) (Draft), Department of the Navy, Naval Sea Systems () (), p y, y
Command, Program Executive Office, Integrated Warfare Systems, December 2008.

[12] Chandra, P., Chess, B., and Steven, J. Putting the Tools to Work: How to Succeed
with Source Code Analysis, IEEE Security & Privacy, pp. 80-83, May-June 2006.

39P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

For More Information . . .

Paul R CrollPaul R. Croll
CSC
10721 Combs Drive
King George, VA 22485-5824

Phone: +1 540.644.6224
Fax: +1 540.663.0276
e mail: pcroll@csc come-mail: pcroll@csc.com

40P. Croll 12th Annual NDIA Systems Engineering Conference, 29 October 2009

